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Time-series MRI data often suffers from image misalignment
due to patient movement and respiratory and other physiologic
motion during the acquisition process. It is necessary that this
misalignment be corrected prior to any automated quantitative
analysis. In this article a fast and automated technique for
removing in-plane misalignment from time-series MRI data is
presented. The method is computationally efficient, robust, and
fine-tuned for the clinical setting. The method was implemented
and tested on data from 21 human subjects, including myocar-
dial perfusion imaging, renal perfusion imaging, and blood-
oxygen level-dependent cardiac T*2 imaging. In these applica-
tions 10-fold or better reduction in image misalignment is re-
ported. The improvement after registration on representative
time–intensity curves is shown. Although the method currently
corrects translation motion using image center of mass, the
mathematical framework of our approach may be extended to
correct rotation and other higher-order displacements. Magn
Reson Med 49:506–514, 2003. © 2003 Wiley-Liss, Inc.
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Image misalignment due to gross motion is a common
problem in clinical applications that involve time-series
data. In these applications, improving the acquisition tech-
niques, for example, by ultrafast imaging to limit cardiac
and respiratory motion, can optimize the quality of each
image, but their usefulness is still limited as a time-series
due to frame-to-frame motion occurring during the total
acquisition. An example of this occurs in myocardial per-
fusion imaging using MRI, where the goal is to characterize
the abnormal distribution of myocardial blood flow using
the infusion of paramagnetic contrast agents (1,2). Image
analysis of perfusion images aims to construct representa-
tive time–intensity curves from specified regions of inter-
est and quantitative parametric maps indexing physiolog-
ical parameters (3). The automatic computation of these
curves is complicated when patients do not breathhold
adequately, resulting in image misalignment over time.
This occurs frequently because first-pass transit of contrast
agents is typically imaged over 30–60 sec, which is too

long for a breathhold. Thus, in perfusion imaging and
other such applications, it becomes imperative to correct
the misalignment of the images by registering them prior to
their use for quantification.

Registration remains an area of active investigation in
image processing with applications in several fields (4–
11), including MRI (12–15). The early 1960s witnessed
pioneering works in this field inspired by the application
of mathematical theories on functions of variables to im-
ages. The need for highly efficient image processing algo-
rithms led to the development of novel approaches where
computers were extensively used for target recognition
and tracking. Among them, two principles are of utmost
value to the design of an efficient approach for registering
time-series image data:

1) Determining the mutual correspondence between a
pair of successive images in a time-series.

2) Identifying the properties of the data that are invari-
ant under transformations such as translation or ro-
tation.

Methods based on the first principle frequently use cor-
relation as a measure of the associativity between func-
tions and then find the location of maximum correlation
(16). This approach has been widely used to solve regis-
tration problems in medical imaging such as 3D recon-
structions from autoradiograms (17) and histological sec-
tions (18), multimodality registration (19,20), and 3D spa-
tial alignment (21). However, application of cross-
correlation to image registration requires additional
considerations. This is due to the fact that the correlation
may be too broad and finding a peak in the correlation may
be difficult (22). Further, 2D image registration is compu-
tationally intensive, with a quadratic overhead with re-
spect to size of the image (23). Thus, improving the per-
formance by optimizing the correlation computations
without sacrificing accuracy becomes key to an effective
implementation of registration. In a recent work (24), the
effectiveness of three different registration methods for
motion correction in dynamic MRI of the kidneys was
compared. The authors found that a Fourier-based ap-
proach measuring the phase-differences between images
yielded better performance than image matching using
cross-correlation. This can be attributed to the fact that the
correlation can be influenced by incorrect local maxima
during a global search. But Fourier-based approaches have
the limitation of requiring image prefiltering to minimize
the influence of sharp edges.

In contrast, methods based on the second principle were
motivated by classical mechanics. Dealing with objects
that extend spatially in two and three dimensions, the
notions of center of mass and moments were developed to
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study their rigid body motions under external forces. The
mathematical properties of moments made them ideal for
studying statistical functions. Moments are used to mea-
sure uniqueness and invariance under transformation of
the distribution. Images as a distribution of pixel samples
can be regarded as a 2D probability distribution function.
Thus, Hu (25) showed that moments can be used for rec-
ognizing images and classifying them independent of their
2D spatial orientations. Pitts and McCulloch (26) sug-
gested that our visual nervous system could plausibly use
the center of mass of an image to produce necessary ocu-
lomotor reflexes to converge the two eyes on a target when
it is in motion.

In our proposed approach, the two principles were com-
bined to create a clinically usable methodology specific to
MR images without the individual shortcomings of either
approach. For instance, the center of mass provides exact
information regarding the translation of a rigid object.
Thus, in principle (for a binary image), this should be
sufficient to compute the registration. However, small
shape changes in the images, as would happen when im-
aging moving organs of interest, could be sufficient to
make the results inaccurate. But the results can still be
used to yield an approximate estimate of the displacement.
Likewise, the registration process using correlation con-
sumes considerable time to process a pair of images due to
the iterative nature of the solution, although the results
may be more accurate. Thus, by using the center of mass as
an initial guess followed by registration by correlation
provides a method that has the benefits of both. Further,
since the correlation search is restricted to a region around
the center of mass guess, the result is more robust than a
global search.

We demonstrate the application of this approach for
registering time-series data from first-pass perfusion imag-
ing of the heart and kidneys and from myocardial BOLD
imaging.

MATERIALS AND METHODS

In applications where the organs being imaged do not
undergo significant elastic deformation or rotations, it is
simple and efficient to correct the translational motion
using rigid body registration methods. Although transla-
tion registration is relatively simpler than elastic or gen-
eral rigid body registration techniques, the size of the
images and the number of images that need to be registered
demands more efficient implementation than that found in
routine pattern matching algorithms.

In typical MRI applications, the spatial extent of an
image field-of-view is much larger than the organ of inter-
est due to signal/noise and aliasing considerations. As a
result, the image includes surrounding structures, which
may or may not have motion similar to the organ of inter-
est. These surrounding structures impact the accuracy of
the registration. The best global registration for the image
as a whole may be different from the desired local regis-
tration of the region of interest. Thus, limiting the region
that will be used for registration helps to eliminate the
interference from surrounding structures. Furthermore,
this increases the efficiency of the registration by restrict-
ing the computation to the desired part of the image.

Additionally, in perfusion images pixels undergo inter-
frame intensity variations due to the transit of the contrast
agent. Registration methods are very sensitive to these
changes and suffer from errors in establishing pixel-corre-
spondence between successive images in this situation.
This requires a preliminary step of normalization of the
images prior to registration. Considering the processing
overhead, we implemented a simple threshold-based nor-
malization technique, which is easy to compute. This pro-
duces a binary map of the organ and simplifies the subse-
quent correlation calculation.

Before registering the binary maps of the images, we
consider the following simplification. Consider an image
feature represented by a pixel group I of arbitrary shape
that appears at different locations in two images I1 and I2
with a relative displacement of �X, �Y. Let this pixel
group I represent the only nonzero pixels in each image,
thus the contribution of surrounding pixels to the follow-
ing equations can be assumed to be zero. Consider now the
sum of the product of the pixels and their respective X and
Y locations in each image:
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In the second summation, the pixel locations can be rep-
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represent the first moment or the center of mass coordi-
nates of the image. Thus, the translation displacement of a
pixel group represented at different locations in two im-
ages can be computed as a difference in first moments of
the two images, assuming all other pixel elements are zero
in both images. Hence, precise displacement of a pixel
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group in a set of images can be determined as long as it
undergoes only pure displacement without any other
changes in their values or distribution.

However, the binary maps of actual MRI images that
need to be registered do not meet these ideal requirements
due to several factors such as image noise, deformable
motion of organs, and the presence of surrounding struc-
tures. As a result, the difference in first moments does not
yield the exact displacement involved. Thus, robust pro-
cessing involving exhaustive search for a match, such as
using cross-correlation measure between the two images,
becomes necessary. In our approach, we first use the first
moment as a predictor to determine the neighborhood of
the actual displacement. We then follow it by a cross-
correlation method to refine the registration in the imme-
diate vicinity with a small search range, thus saving high
computational overhead associated with larger search re-
gions that may be necessary otherwise.

Cross-correlation of two images I1(x,y) and I2(x,y) for a
given displacement (i,j) is defined as:
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and is a measure of the goodness of registration between
the two. Since I1 and I2 are binary, this simplifies to:

R�i, j� �

�
x

�
y

I1�x, y�I2�x � i, y � j�

��
x

�
y

I1�x, y���
x

�
y

I2�x, y�
.

For implementation efficiency, we calculate the squared-
correlation as:
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We compute R2(i,j) for every possible pair (i,j) within the
search region as guided by the motion of the center of the
mass and pick the displacement which maximizes the
squared correlation coefficient:

� ı̂, ĵ� � arg max
(i,j)

R2�i, j�.

Implementation

The following steps describe the process flow of the
method for registering the images using an automatic, pair-
wise, cross-correlation-based technique:

1) The user first identifies the region of interest to be
registered by clicking on the organ of interest in any
one image of the time-series. The algorithm uses this
selected point to center a window and extracts the
data to be used for cross-correlation matching. The

size of the extracted window is preset and is based on
the typical size of heart and kidneys observed in
perfusion imaging. The default window size used in
our experiments was 80 � 80 pixels. However, the
user interface permits changing the window size if
the organ of interest is too large or too small. The user
must ensure that the chosen window is just large
enough to encompass the organ of interest in all time
frames. The 80 � 80 choice was sufficient in all
experiments reported in this article.

2) The windowed data is next converted to binary form
by thresholding. The threshold value used is com-
puted from the pixel data itself and is set to the mean
signal intensity in the windowed image. Since the
threshold is computed independently for each image,
it is insensitive to intensity changes due to contrast
variations.

3) The first moment (or center of mass) of the windowed
and thresholded data from two successive images is
calculated and compared. The motion of the center of
the mass yields the initial coarse estimate of motion
and is used to set the boundaries of the roaming
region over which the cross-correlation is evaluated.
The roaming region is centered at the location of the
center of mass and is 10 � 10 pixels wide. If the
center of mass undergoes very large displacement
between adjacent images (greater than 10 pixels),
then the center of mass is discarded and the correla-
tion search window is restricted to 10 � 10 pixels
centered on the original image. This yields insensi-
tivity to large intensity variations such as those oc-
curring during arrival of contrast agents.

4) Cross-correlation between the two images is com-
puted for every possible displacement of the second
image within this search region. The optimal esti-
mate of displacement is found by maximizing the
squared cross-correlation within the search zone. The
second image is then translated by the computed
displacements to align it spatially with the first im-
age.

5) This process is repeated for all pairs of images in the
series.

The above algorithm is depicted as a flowchart in Fig. 1.
The algorithm was implemented using IDL (Research Sys-
tems Inc., Boulder, CO) as part of a custom MRI Display
and Analysis Tool (CINE tool). The implementation is
platform-independent and has been tested on a Sun Ultra
Sparc II workstation (Sun Microsystems, Sunnyvale, CA)
and on Windows 2000 (Microsoft, Redmond, WA), both
with 256 MB RAM. On the Windows platform, 10 images
are registered per second using the automatic method.
User interaction is limited to one click-point to identify
the approximate position of the organ of interest in any
one image. The user can also adjust the window size if
necessary.

APPLICATIONS

Our method was validated on time-series MRI data involv-
ing organs that undergo significant motion during image
acquisition such as cardiac and renal perfusion and BOLD
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imaging. In these applications we observed that the
method significantly reduced the misalignment of images,
thus enhancing the usefulness of qualitative cine display
of temporal course of events and accuracy of quantification
from these time-series. The results for the three applica-
tions are summarized below.

Myocardial Perfusion

Data Acquisition

Ten patients were scanned under IRB-approved protocols
using a GE Signa 1.5 T MRI system (GE Medical Systems,
Waukesha, WI) with a high-performance gradient sub-
system (40 mT/m, 150 T/m/sec). Between four and six
first-pass perfusion image slices were collected every
heartbeat during infusion of an exogenous contrast agent
(Gd-DTPA). Images were collected over a 1–2-min period
using a fast-gradient echo sequence (27) and patients were
instructed to suspend breathing for a comfortable period
and breathe normally thereafter. An illustrative perfusion
image is shown in Fig. 2.

Due to respiratory motion, the spatial location of the
heart in the sequence of images undergoes large displace-
ment (typically 5–10 pixels). This can be seen in Fig. 3a,
where we show a section of the heart through a serial stack
of the time sequence and the edge profile of left-ventricular
myocardium can be seen (labeled “A”). We noticed that
the predominant motion was in-plane translation due to
the motion of the diaphragm. Small but noticeable rota-
tional motion was also present in a few cases, which is not
addressed by the current method.

Results

The motion occurring in these images before and after
image registration was analyzed as follows. In each of the

FIG. 1. Registration algorithm flowchart.

FIG. 2. Sample myocardial perfusion image.

FIG. 3. Cut-plane sections through the time-series data, showing
the profile of the structures under motion. Unregistered data (a),
registered data (b). “A” depicts the profile of the myocardial edges
and “B” depicts the chest wall profile.
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images, the anterior right-ventricular (RV) insertion point
was manually identified as a landmark. Accuracy of reg-
istration was quantified by measuring the motion of this
landmark between successive image pairs, both in unreg-
istered and registered time-series.

A total of 433 images from 10 patients were analyzed.
The mean motion in the original unregistered images was
3.32 pixels and the standard deviation was 2.68. After
automatic registration (as described above), the mean mo-
tion was 0.27 pixels and the SD was 0.80. Thus, our pro-
posed method yields more than a 10-fold reduction in
registration error. The mean error if just the center of mass
is used to estimate motion is 1.67 pixels. We compared the
computational performance of using a simple cross-corre-
lation-only technique with our proposed approach and
obtained a speedup of 11.1 times compared to just a cross-
correlation technique (28). An example is depicted in Fig.
3b, where we see that the temporal profile of myocardial
edges (labeled “A”) is more uniform than that in Fig. 3a.
Note that in this application, as we chose the LV chamber
to be the structure of interest that requires registration, the
surrounding structures that were stationary prior to regis-
tration may now appear misaligned. This can be seen in
the chest-wall area (labeled “B”) in Fig. 3b. The impor-
tance of registration can be seen by comparing signal in-
tensity vs. time curves for a small region of interest placed
in the posterior lateral wall of the myocardium before and
after automatic registration. We show curves from four
subjects in Fig. 4a–d. Preregistration curves exhibit large
variations particularly at later image indices due to breath-
ing motion causing the region of interest to move in and
out of tissue boundaries. In contrast, the postregistration
curves are more uniform and characteristic of the true
wash-in effect, which should permit a more representative
estimation of subclinical perfusion indexes such as maxi-
mum upslope, time to peak enhancement, and contrast
enhancement ratio. It should be noted that the postregis-
tration curves also exhibit a small amount of variability,
primarily due to the effects of through-plane motion not
accounted for here. To quantify the variability of ROI
signal intensities due to motion and to assess the impact of
registration, we computed the absolute signal intensity
difference between adjacent images for all time–intensity
curves. Since the signal intensity is expected to vary rap-
idly during the upslope of the myocardial enhancement,
we calculated the signal intensity difference as:

Difference(t) � mag[SI ROI t �

((SI ROI t � 1) 	 (SI ROI t 	 1)) / 2]

where SI ROI t is the mean signal intensity in the ROI in the
image at time t. A difference plot for the curves in Fig. 4a

FIG. 4. Sample time–intensity curves from a small region of interest
placed in the posterior lateral wall of the myocardium before and
after registration for four subjects (a–d). The lines joined by empty
symbols represent the curves before registration and the lines
joined by filled symbols represent the curves after registration. e:
The absolute signal intensity difference between adjacent images
for the curves in a to characterize the variability in ROI signal values
due to motion before and after registration.
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is shown in Fig. 4e. On average, the absolute signal inten-
sity difference was 6.6 
 3.9 before registration and 2.9 

1.5 after registration (P � 0.004). Since breathing artifacts
tended to be more common towards the end of the acqui-
sition, as can be seen in Fig. 4a–d, we also performed this
analysis on the last 20 images of each acquisition. For
these images the absolute signal difference was 7.9 

4.7 before registration and 3.0 
 1.9 after registration (P �
0.002). The maximum absolute signal intensity difference
was 25.7 
 15.5 before registration compared with 8.6 

6.1 after registration (P � 0.001). Thus, in summary, ap-
parent image-to-image variability was 2–3 times worse on
perfusion images preregistration. Automatic registration
had significant benefits in defining the myocardial signal
intensity–time curves more accurately.

It should be pointed out that by using manual registra-
tion subsequent to the automatic method, the residual
error of 0.27 pixels can be removed and the images can be
perfectly registered in the sense that the chosen landmark
can be exactly aligned. Our experiments show that an
image sequence comprising 50 frames can be automati-
cally registered in 5 sec. We found that only 30 images out
of the 433 studied required manual correction after auto-
matic registration. As a result, manual postregistration cor-
rection could be performed in approximately 1 min,
whereas a completely manual approach required approx-
imately 10 min. This shows the substantial reduction in
processing time achievable for registering large time-series
datasets when using automatic registration in combination
with manual correction vs. a fully manual approach.

Renal Perfusion

Data Acquisition

First-pass renal perfusion data was acquired using the
technique reported in (29). Time-series data was obtained
using an ungated, fast gradient-echo sequence and an im-
age was acquired every 5 sec for a period of 1–2 min. Six
patients were scanned under an IRB-approved protocol
and the images were analyzed for motion before and after
automatic registration.

Results

In all, 264 images from six patients were analyzed. The
mean motion before registration was 3.75 pixels (SD �
3.02). After automatic registration, the mean motion was

0.27 pixels (SD � 1.53). The mean error if just the center of
mass is used to estimate motion is 2.25 pixels. Figures 5,
6a,b, respectively, show an example of renal perfusion
image, the profile of the unregistered data, and the profile
after image registration. Dramatic improvement in the
alignment of renal edge profile can be seen (labeled “A”).
The time for automatic and manual processing was similar
to that reported in Myocardial Perfusion above.

Myocardial BOLD Imaging

Blood oxygenation level-dependent (BOLD) MRI has been
applied to the human heart as a means of assessing perfu-
sion reserve indexed by the change in transverse relax-
ation-time (T*2) under administration of a pharmacological
stress agent, without the use of exogenous contrast agents
(30). Just as in perfusion imaging, in order to accurately
determine T*2 changes it is important to correct for motion
of the temporal data.

Data Acquisition

We analyzed five healthy subjects from a previously re-
ported study comparing T*2 changes in response to dipy-
ridamole in healthy volunteers vs. hypertensive patients
(31). Approximately 30 temporal image frames over rest
and stress epochs were acquired using a breathheld tech-
nique. Corresponding to each image in this time series, we
derived a composite T*2 image, an extrapolated TE �
0 proton-density image, and the image corresponding toFIG. 5. Sample renal perfusion image.

FIG. 6. Cut-plane sections through the time-series data, showing
the profile of the structures under motion. Unregistered data (a),
registered data (b). “A” depicts the profile of the renal edge.
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the shortest TE value (31). The error in the registration
algorithm was quantified from the displacement of the
anterior RV insertion point between successive T*2 images.
Figure 7 shows an example of a T*2 image and the corre-
sponding extrapolated proton density image.

Results

Typical SNR of the underlying TE images used to generate
T*2 images ranged from approximately 40 (for the shortest
TE) to 10 (for the longest TE) and the mean SNR of the
composite T*2 images was 4. The mean displacement of the
RV insertion point for the five subjects in the unregistered
images was 1.8 pixels. Our method was first directly ap-
plied to register these images, yielding a mean motion of
1.6 pixels after registration (11% improvement). The per-
formance of the method was poor because the T*2 images
suffer from signal decay and lack the high-definition struc-
tures that aid the registration. In an alternate approach, we
first registered the higher definition extrapolated TE �
0 images used as a template and then copied this registra-
tion to the underlying T*2 data. By this method we reduced
the motion to 0.6 pixels (67% improvement). This appli-
cation highlights that in situations where the image quality
is insufficient for accurate automatic registration, it may be
possible to use co-registered synthetic images with higher
contrast as templates, register them, and then apply the
results to the underlying data for better performance.
These registered images were used for physiological as-
sessment of the BOLD effect in (32).

A summary of the results from each of the above three
applications is shown in Table 1. A plot of the comparison
of true motion, error from automatic registration, and error

from center of mass alone is shown in Fig. 8 from all
cardiac and renal perfusion subjects studied.

DISCUSSION

We have demonstrated a method that automatically regis-
ters time-series MRI data correcting for translational mo-
tion due to respiration or patient movement. The method
was validated on datasets from cardiac perfusion, renal
perfusion, and myocardial BOLD imaging. The proposed
method is amenable to hardware implementation and can
possibly be used to directly register images by the scanner
reconstruction and postprocessing software itself. The cur-
rent implementation relies on being guided by an initial-
ization point centered in the organ of interest. This step
can be automated by using the center of the field-of-view of
the acquisition window. The size of the correlation win-
dow can also be determined empirically from the image
pixel size.

As mentioned previously, we noticed no significant ro-
tational component of motion of the organs in consider-
ation in the planes of interest. However, the method can be
adapted to perform rotational registration by the use of
second-order moments, which are invariant under rota-
tions.

Converting images to a binary representation by thresh-
olding is the enabling component of this method in adapt-
ing routine cross-correlation-based image registration
techniques for perfusion imaging applications. In perfu-
sion imaging, the passage of contrast agent causes different
organs to appear with increased signal intensity during the
time-course. Thus, use of center of mass alone as an esti-

FIG. 7. a: Sample T *2 image from a BOLD
myocardial study. b: Corresponding extrap-
olated proton-density image.

Table 1
Summary of Results

Application
No. of subjects

(images)
Mean motion

before reg. (in pixels)
Mean motion after
auto reg. (in pixels)

Cardiac perfusion 10 (433) 3.32 0.27
Renal perfusion 6 (264) 3.75 0.27
Cardiac BOLD 5 (150) 1.80 0.60
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mate of motion is prone to error since the effective image
shape changes during the inflow and outflow of the agent.
Our method is insensitive to these changes, as it is able to
find the optimum cross-correlation match by searching in
a restricted region of the original image and disregarding
the large displacement of the center of mass. This is shown
in Fig. 9, where we compare the motion of the center of the
mass of the windowed-thresholded image with the final
estimate of motion yielded by the method for one of the
subjects from Myocardial Perfusion above. It can be seen
that for a majority of the time points, the center of mass
displacement tracks the final estimate of true motion of the
image to a good approximation. The time points where
there is a large difference between the two correspond to
those time points when the contrast agent kinetics light up
other organs within the correlation window, as shown by
sharp changes in the image area profile. Thus, in addition
to correctly identifying these situations and correcting for
them, the method provides a way to detect the time-of-
arrival of contrast-agent boluses. This has applications in
perfusion image analysis and flow quantification.

Application of the technique to myocardial BOLD imag-
ing reveals that in situations where the image SNR is
inherently limited due to the physics (as in T*2 images), it
may be possible to synthesize higher-definition data (e.g.,
extrapolated proton-density images) and use them for in-
creasing the accuracy of registration. The method can be
used in a wide class of applications that deal with con-
structing parametric maps from underlying time-series
data.

The overall goal of this study was to develop a technique
for compensating motion, thus allowing automatic analy-
sis and quantification of time-series data. External clinical
measures will be required to determine whether the pro-
posed registration methods affect the determination of and
increase the validity of derived physiological parameters.
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